Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
Arch Biochem Biophys ; : 109990, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636690

RESUMO

Nucleus pulposus (NP) cell apoptosis is a significant indication of accelerated intervertebral disc degeneration; however, the precise mechanism is unelucidated as of yet. Ephrin B2 (EFNB2), the only gene down-regulated in the three degraded intervertebral disc tissue microarray groups (GSE70362, GSE147383 and GSE56081), was screened for examination in this study. Subsequently, EFNB2 was verified to be down-regulated in degraded NP tissue samples. Interleukin-1 (IL-1ß) treatment of NP cells to simulate the IDD environment indicated that IL-1ß treatment decreased EFNB2 expression. In degenerative NP cells stimulated by IL-1ß, EFNB2 knockdown significantly increased the rate of apoptosis as well as the apoptosis-related molecules cleaved-caspase-3 and the Bax to Bcl-2 ratio. EFNB2 was found to promote AKT, PI3K, and mTOR phosphorylation; the PI3K/AKT signaling role was investigated using the PI3K inhibitor LY294002. EFNB2 overexpression significantly increased PI3K/AKT pathway activity in IL-1ß-stimulated NP cells than the normal control. Moreover, EFNB2 partially alleviated NP cell apoptosis induced by IL-1ß, reduced the cleaved-cas3 level, and decreased the Bax/Bcl-2 ratio after the addition of the inhibitor LY294002. Additionally, EFNB2 overexpression inhibited the ERK1/2 phosphorylation; the effects of EFNB2 overexpression on ERK1/2 phosphorylation, degenerative NP cell viability, and cell apoptosis were partially reversed by ERK signaling activator Ceramide C6. EFNB2 comprehensively inhibited the apoptosis of NP cells by activating the PI3K/AKT signaling and inhibiting the ERK signaling, obviating the exacerbation of IDD. EFNB2 could be a potential target to protect against degenerative disc changes.

2.
Sci Bull (Beijing) ; 69(8): 1037-1049, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38431467

RESUMO

In thermoelectrics, doping is essential to augment the figure of merit. Traditional strategy, predominantly heavy doping, aims to optimize carrier concentration and restrain lattice thermal conductivity. However, this tactic can severely hamper carrier transport due to pronounced point defect scattering, particularly in materials with inherently low carrier mean-free-path. Conversely, dilute doping, although minimally affecting carrier mobility, frequently fails to optimize other vital thermoelectric parameters. Herein, we present a more nuanced dilute doping strategy in GeTe, leveraging the multifaceted roles of small-size metal atoms. A mere 4% CuPbSbTe3 introduction into GeTe swiftly suppresses rhombohedral distortion and optimizes carrier concentration through the aid of Cu interstitials. Additionally, the formation of multiscale microstructures, including zero-dimensional Cu interstitials, one-dimensional dislocations, two-dimensional planar defects, and three-dimensional nanoscale amorphous GeO2 and Cu2GeTe3 precipitates, along with the ensuing lattice softening, contributes to an ultralow lattice thermal conductivity. Intriguingly, dilute CuPbSbTe3 doping incurs only a marginal decrease in carrier mobility. Subsequent trace Cd doping, employed to alleviate the bipolar effect and align the valence bands, yields an impressive figure-of-merit of 2.03 at 623 K in (Ge0.97Cd0.03Te)0.96(CuPbSbTe3)0.04. This leads to a high energy-conversion efficiency of 7.9% and a significant power density of 3.44 W cm-2 at a temperature difference of 500 K. These results underscore the invaluable insights gained into the constructive role of nuanced dilute doping in the concurrent tuning of carrier and phonon transport in GeTe and other thermoelectric materials.

3.
Phys Chem Chem Phys ; 26(9): 7695-7705, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38372167

RESUMO

The determination of impact sensitivity of energetic materials traditionally relies on expensive and safety-challenged experimental means. This has instigated a shift towards scientific computations to gain insights into and predict the impact response of energetic materials. In this study, we refine the phonon-vibron coupling coefficients ζ in energetic materials subjected to impact loading, building upon the foundation of the phonon up-pumping model. Considering the full range of interactions between high-order phonon overtones and molecular vibrational frequencies, this is a pivotal element for accurately determining phonon-vibron coupling coefficients ζ. This new coupling coefficient ζ relies exclusively on phonon and molecular vibrational frequencies within the range of 0-700 cm-1. Following a regression analysis involving ζ and impact sensitivity (H50) of 45 molecular nitroexplosives, we reassessed the numerical values of damping factors, establishing a = 2.5 and b = 35. This coefficient is found to be a secondary factor in determining sensitivity, secondary to the rate of decomposition propagation and thermodynamic factor (heat of explosion). Furthermore, the relationship between phonon-vibron coupling coefficients ζ and impact sensitivity was studied in 16 energetic crystalline materials and eight nitrogen-rich energetic salts. It was observed that as the phonon-vibron coupling coefficient increases, the tendency for reduced impact sensitivity H50 still exists.

4.
Adv Sci (Weinh) ; 11(14): e2305204, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38327127

RESUMO

Hepatocellular carcinoma (HCC) is a highly lethal malignant tumor, and the current non-invasive diagnosis method based on serum markers, such as α-fetoprotein (AFP), and des-γ-carboxy-prothrombin (DCP), has limited efficacy in detecting it. Therefore, there is a critical need to develop novel biomarkers for HCC. Recent studies have highlighted the potential of exosomes as biomarkers. To enhance exosome enrichment, a silicon dioxide (SiO2) microsphere-coated three-dimensional (3D) hierarchical porous chip, named a SiO2-chip is designed. The features of the chip, including its continuous porous 3D scaffold, large surface area, and nanopores between the SiO2 microspheres, synergistically improved the exosome capture efficiency. Exosomes from both non-HCC and HCC subjects are enriched using an SiO2-chip and performed RNA sequencing to identify HCC-related long non-coding RNAs (lncRNAs) in the exosomes. This study analysis reveales that LUCAT-1 and EGFR-AS-1 are two HCC-related lncRNAs. To further detect dual lncRNAs in exosomes, quantitative real time polymerase chain reaction (qRT-PCR) is employed. The integration of dual lncRNAs with AFP and DCP significantly improves the diagnostic accuracy. Furthermore, the integration of dual lncRNAs with DCP effectively monitors the prognosis of patients with HCC and detects disease progression. In this study, a liquid biopsy-based approach for noninvasive and reliable HCC detection is developed.


Assuntos
Carcinoma Hepatocelular , Exossomos , Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , alfa-Fetoproteínas/análise , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Biomarcadores Tumorais/genética , Exossomos/genética , Exossomos/química , Porosidade , Dióxido de Silício , Perfilação da Expressão Gênica
5.
J Colloid Interface Sci ; 661: 1000-1010, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38335785

RESUMO

The present study, for the first time, reports the fabrication of core-shell poly(ionic liquids)@ZIF-8 nanocomposites through a facile in-situ polymerization strategy. These composites exhibited exceptional structural characteristics including high specific surface areas and the integration of high-density Lewis acid/base and nucleophilic active sites. The structure-activity relationship, reusability, and versatility of the poly(ionic liquids)@ZIF-8 composites were investigated for the cycloaddition reaction between CO2 and epoxide. By optimizing the composites structures and their catalytic performance, PIL-Br@ZIF-8(2:1) was identified as an exciting catalyst that exhibits high activity and selectivity in the synthesis of various cyclic carbonates under mild or even atmospheric pressure or simulated flue gas conditions. Moreover, the catalyst demonstrated excellent structural stability while maintaining its catalytic activity throughout multiple usage cycles. By combining DFT calculations, we investigated the transition states and intermediate geometries of the cycloaddition reaction in different coordination microenvironments, thereby proposing a synergistic catalytic mechanism involving multiple active sites.

6.
Clin Chim Acta ; 554: 117777, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38220138

RESUMO

BACKGROUND: Due to the difficulty of pathological sampling, the clinical differentiation between benign and malignant biliopancreatic diseases remains challenging. Endoscopic retrograde cholangiopancreatography (ERCP) is used to investigate biliary diseases, enabling the collection of bile. This study assessed potential metabolic alterations in biliopancreatic malignancies by exploring changes in the bile metabolome and the diagnostic potential of bile metabolome analysis. METHODS: A total of 264 bile samples were collected from patients who were divided into a discovery cohort (n = 85) and a validation cohort (n = 179). Untargeted metabolomic analysis was used in the discovery cohort, while targeted metabolomic analysis was used in the validation cohort for further investigation of the differentially abundant metabolites. RESULTS: The untargeted metabolomic analysis revealed that the metabolic changes associated with biliopancreatic malignancies occurred mainly in lipid metabolites, among which fatty acid metabolism was most significantly altered, and differentially abundant metabolites identified in the discovery cohort were mainly enriched in unsaturated fatty acid synthesis and linolenic acid synthesis pathways. Analysis of free fatty acid (FFA) metabolism in the validation cohort revealed that the FFA levels and related indicators verified the abnormal fatty acid metabolism associated with biliopancreatic malignancies. The combined model for biliopancreatic malignancies based on the fatty acid indexes and clinical test results improved the diagnostic performance of current clinical level. Then, we used machine learning to define three different FFA metabolic clusters of biliopancreatic malignancies, and survival analysis showed significant differences in prognostic outcomes among the three clusters. CONCLUSIONS: This study found metabolic alterations in biliopancreatic malignancies based on bile samples, which may provide new insights for the clinical diagnosis and prognostic assessment of biliopancreatic malignancies.


Assuntos
Bile , Neoplasias , Humanos , Metaboloma , Metabolômica/métodos , Ácidos Graxos
7.
Hepatology ; 79(1): 149-166, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37676481

RESUMO

BACKGROUND AND AIMS: Hyperlipidemia has been extensively recognized as a high-risk factor for NASH; however, clinical susceptibility to NASH is highly heterogeneous. The key controller(s) of NASH susceptibility in patients with hyperlipidemia has not yet been elucidated. Here, we aimed to reveal the key regulators of NASH in patients with hyperlipidemia and to explore its role and underlying mechanisms. APPROACH AND RESULTS: To identify the predominant suppressors of NASH in the setting of hyperlipidemia, we collected liver biopsy samples from patients with hyperlipidemia, with or without NASH, and performed RNA-sequencing analysis. Notably, decreased Lineage specific Interacting Motif domain only 7 (LMO7) expression robustly correlated with the occurrence and severity of NASH. Although overexpression of LMO7 effectively blocked hepatic lipid accumulation and inflammation, LMO7 deficiency in hepatocytes greatly exacerbated diet-induced NASH progression. Mechanistically, lysine 48 (K48)-linked ubiquitin-mediated proteasomal degradation of tripartite motif-containing 47 (TRIM47) and subsequent inactivation of the c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (MAPK) cascade are required for the protective function of LMO7 in NASH. CONCLUSIONS: These findings provide proof-of-concept evidence supporting LMO7 as a robust suppressor of NASH in the context of hyperlipidemia, indicating that targeting the LMO7-TRIM47 axis is a promising therapeutic strategy for NASH.


Assuntos
Hiperlipidemias , Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/patologia , Hiperlipidemias/complicações , Fígado/patologia , Inflamação/metabolismo , Hepatócitos/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Proteínas com Motivo Tripartido/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo
8.
Ann Hepatol ; 29(1): 101160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37774837

RESUMO

INTRODUCTION AND OBJECTIVES: Cavin1 is a cell membrane caveolin, with controversial function in different tumors. Meanwhile, the role of Cavin1 in hepatocellular carcinoma (HCC) progression remains unclear. In this study, we attempted to elucidate the significance of Cavin1 in HCC occurrence and progression. MATERIALS AND METHODS: Cavin1 content was examined in HCC tissues and paired adjacent normal liver tissues by qRT-PCR and IHC among 81 HCC patients. The Cavin1-mediated regulation of HCC proliferation and metastasis was assessed through in vitro and in vivo experiments. Finally, using GSEA, we found out Cavin1 could be a potential regulator of the Wnt pathway. The alterations of the Wnt pathway-related proteins were identified by Western Blot analysis. RESULTS: Cavin1 was lower expressed in HCC, which implied poor survival outcomes in HCC patients. Phenotypic experiments revealed that Cavin1 strongly suppressed HCC proliferation and migration in vitro and in vivo. Besides, altered epithelial-mesenchymal transition (EMT)-related protein expressions were detected. Based on our GSEA analysis, Cavin1 activated the Wnt pathway, and Western Blot analysis revealed diminished ß-catenin, c-Myc, and MMP9 contents upon Cavin1 overexpression. CONCLUSIONS: Cavin1 suppresses HCC progression by modulating HCC proliferation and migration via inhibiting the Wnt/ß-catenin axis activation.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Via de Sinalização Wnt
9.
Small ; 20(2): e2305670, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37658521

RESUMO

N-type Mg3 Sb2 -based thermoelectric materials show great promise in power generation due to their mechanical robustness, low cost of Mg, and high figure of merit (ZT) over a wide range of temperatures. However, their poor thermal stability hinders their practical applications. Here, MgB2 is introduced to improve the thermal stability of n-type Mg3 Sb2 . Enabled by MgB2 decomposition, extra Mg can be released into the matrix for Mg compensation thermodynamically, and secondary phases of Mg─B compounds can kinetically prevent Mg diffusion along grain boundaries. These synergetic effects inhibit the formation of Mg vacancies at elevated temperatures, thereby enhancing the thermal stability of n-type Mg3 Sb2 . Consequently, the Mg3.05 (Sb0.75 Bi0.25 )1.99 Te0.01 (MgB2 )0.03 sample exhibits negligible variation in thermoelectric performance during the 120-hour continuous measurement at 673 K. Moreover, the ZT of n-type Mg3 Sb2 can be maintained by adding MgB2 , reaching a high average ZT of ≈1.1 within 300-723 K. An eight-pair Mg3 Sb2 -GeTe-based thermoelectric device is also fabricated, achieving an energy conversion efficiency of ≈5.7% at a temperature difference of 438 K with good thermal stability. This work paves a new way to enhance the long-term thermal stability of n-type Mg3 Sb2 -based alloys and other thermoelectrics for practical applications.

10.
J Colloid Interface Sci ; 656: 24-34, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37980721

RESUMO

The development of novel catalytic materials that integrate multifunctional sites has significant implications for expanding the utilization of CO2 resources. However, simultaneously achieving high activity and stability remains a formidable challenge. In this study, a series of ZIF-8(Zn/Co)@g-C3N4 nanocomposites were prepared by employing a thermo-physical compounding strategy that involved the combination of nitrogen-rich graphitic carbon nitride (g-C3N4) nanosheets with ZIF-8(ZnCo). The influences of different compositions of g-C3N4 and ZIF-8(Zn/Co) on the catalyst structure were systematically investigated. Subsequently, the catalytic activities of these nanocomposites towards the cycloaddition reaction between CO2 and epoxide were examined under different conditions. The presence of abundant Lewis base sites in g-C3N4 facilitates CO2 activation, while multiple Lewis acid sites in ZIF-8(Zn/Co) enable efficient epoxide activation. By working synergistically with a co-catalyst, tetrabutylammonium bromide (TBAB), CO2 and epoxides can be efficiently reacted to synthesize the corresponding cyclic carbonates under mild or even atmospheric pressure conditions. The catalytic reaction conditions were optimized, and both the catalyst's recycling performance and the scope of epoxides with various substituents were investigated. The integration of g-C3N4 and ZIF-8(Zn/Co) endows the catalytic material with exceptional structural stability and remarkable catalytic activity, thereby providing a new platform for highly efficient CO2 conversion.

11.
Cell Signal ; 115: 111016, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38128708

RESUMO

Tumor immunosuppression are prominent characteristics of brain glioma. Current standard modality including surgical resection and chemoradiotherapy do not significantly improve clinical outcomes. Cancer-associated fibroblasts (CAFs) that regard as important stromal cells in tumor microenvironment have been confirmed to play crucial roles in tumor development. However, the effects of CAFs on tumor immunosuppression in glioma are not well expounded. In this study, we report that CAFs contributes to the formation of glioma immunosuppressive microenvironment. Specifically, we found that glioma-derived Jagged1 enhanced the proliferation and PD-L1 expression of CAFs in vitro. Importantly, we discovered that Notch1, c-Myc and PD-L1 expression were significantly increased in high Jagged1-expressing gliomas, moreover, we further confirmed that Notch1 and PD-L1 expression located on the CAFs in glioma tissues. We also found that glioma-derived Jagged1 promotes the increase of tumor-infiltrating macrophages, M2 macrophages and Foxp3 Treg cells, as well as no significance of M1 macrophages and CD8+ T cells, indicating potential immunosuppression. This study opens up novel therapeutic strategies reversing CAF immunosuppression for gliomas.


Assuntos
Fibroblastos Associados a Câncer , Glioma , Proteína Jagged-1 , Humanos , Antígeno B7-H1/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Glioma/metabolismo , Microambiente Tumoral , Proteína Jagged-1/metabolismo
12.
J Med Virol ; 96(1): e29335, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38149454

RESUMO

Oncolytic virotherapy is a promising therapeutic approach for glioblastoma (GBM) treatment, although the outcomes are partially satisfactory. Hence, more effective strategies are needed urgently to modify therapeutic viruses to enhance their efficiency and safety in killing tumor cells and improve the survival rate of GBM patients. This study generated a new-generation oncolytic adenovirus Ad5 KT-E1A-IL-15 (TS-2021) and evaluated its antitumor efficacy. Ex vivo analyses revealed Ki67 and TGF-ß2 co-localized in GBM cells. In addition, TS-2021 selectively replicated in GBM cells, which was dependent on the expression of Ki67 and TGF-ß2. The immunocompetent mice model of GBM demonstrated the in vivo efficacy of TS-2021 by inhibiting tumor growth and improving survival proficiently. Notably, TS-2021 effectively reduced MMP3 expression by inactivating the MKK4/JNK pathway, thereby reducing tumor invasiveness. Altogether, the findings of the present study highlight that TS-2021 can effectively target GBM cells expressing high levels of Ki67 and TGF-ß2, exerting potent antitumor effects. Additionally, it can improve efficacy and suppress tumor invasiveness by inhibiting the MKK4/JNK/MMP3 pathway. Thus our study demonstrates the efficiency of the novel TS-2021 in the mouse model and provides a potential therapeutic option for patients with GBM.


Assuntos
Infecções por Adenoviridae , Glioblastoma , Animais , Camundongos , Humanos , Adenoviridae/genética , Glioblastoma/terapia , Glioblastoma/genética , Glioblastoma/patologia , Regiões 5' não Traduzidas , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta2/metabolismo , Interleucina-15/metabolismo , Linhagem Celular Tumoral
13.
J Mol Model ; 30(1): 9, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38093144

RESUMO

CONTEXT: To find the potential value of Ca3N2 in the field of optoelectronics, the physical properties of Ca3N2 will be analyzed. It can be concluded from the electronic properties that the Ca-N bonds of α-Ca3N2 are more stable than those of δ-Ca3N2 and ε-Ca3N2. The dielectric function, reflectivity function, and absorption function of three types of Ca3N2 were accurately calculated, and it was concluded that α-Ca3N2, δ-Ca3N2, and ε-Ca3N2 have greater transmittance for visible light and exhibit optical transparency in the near-infrared frequency domain. Combined with the high hardness, strong bonding, high melting point, and wear resistance of Ca3N2, Ca3N2 can be used as a new generation of window heat-resistant materials. The α-Ca3N2, δ-Ca3N2, and ε-Ca3N2 are indirect, direct, and indirect narrow bandgap compounds, respectively, that is, δ-Ca3N2 is more suitable for luminescent materials than α-Ca3N2 and ε-Ca3N2. α-Ca3N2 and δ-Ca3N2 have high reflective properties in the ultraviolet region and can be used as UV protective coatings. All three Ca3N2 materials can be used industrially to synthesize photovoltaic devices that operate in the ultraviolet region. METHODS: Based on the first-principles of density functional theory calculations, the structures, electronic properties, and optical properties of α-Ca3N2, δ-Ca3N2, and ε-Ca3N2 were calculated. The calculation results show that although the α-Ca3N2, δ-Ca3N2, and ε-Ca3N2 have similar electronic structures, some phases have better properties in some aspects.

14.
Innovation (Camb) ; 4(6): 100522, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37915362

RESUMO

In thermoelectrics, phase engineering serves a crucial function in determining the power factor by affecting the band degeneracy. However, for low-symmetry compounds, the mainstream one-step phase manipulation strategy, depending solely on the valley or orbital degeneracy, is inadequate to attain a high density-of-states effective mass and exceptional zT. Here, we employ a distinctive two-step phase manipulation strategy through stepwise tailoring chemical bonds in GeSe. Initially, we amplify the valley degeneracy via CdTe alloying, which elevates the crystal symmetry from a covalently bonded orthorhombic to a metavalently bonded rhombohedral phase by significantly suppressing the Peierls distortion. Subsequently, we incorporate Pb to trigger the convergence of multivalence bands and further enhance the density-of-states effective mass by moderately restraining the Peierls distortion. Additionally, the atypical metavalent bonding in rhombohedral GeSe enables a high Ge vacancy concentration and a small band effective mass, leading to increased carrier concentration and mobility. This weak chemical bond along with strong lattice anharmonicity also reduces lattice thermal conductivity. Consequently, this unique property ensemble contributes to an outstanding zT of 0.9 at 773 K for Ge0.80Pb0.20Se(CdTe)0.25. This work underscores the pivotal role of the two-step phase manipulation by stepwise tailoring of chemical bonds in improving the thermoelectric performance of p-bonded chalcogenides.

15.
Eur J Med Res ; 28(1): 549, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38031121

RESUMO

BACKGROUND: A scientific and comprehensive analysis of the current status and trends in the field of cancer-associated fibroblast (CAF) research is worth investigating. This study aims to investigate and visualize the development, research frontiers, and future trends in CAFs both quantitatively and qualitatively based on a bibliometric approach. METHODS: A total of 5518 publications were downloaded from the Science Citation Index Expanded of Web of Science Core Collection from 1999 to 2021 and identified for bibliometric analysis. Visualized approaches, OriginPro (version 9.8.0.200) and R (version 4.2.0) software tools were used to perform bibliometric and knowledge-map analysis. RESULTS: The number of publications on CAFs increased each year, and the same tendency was observed in the RRI. Apart from China, the countries with the largest number of publications and the most cited frequency were mainly Western developed countries, especially the USA. Cancers was the journal with the largest number of articles published in CAFs, and Oncology was the most popular research orientation. The most productive author was Lisanti MP, and the University of Texas System was ranked first in the institutions. In addition, the topics of CAFs could be divided into five categories, including tumor classification, prognostic study, oncologic therapies, tumor metabolism and tumor microenvironment. CONCLUSIONS: This is the first thoroughly scientific bibliometric analysis and visualized study of the global research field on CAFs over the past 20 years. The study may provide benefits for researchers to master CAFs' dynamic evolution and research trends.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Humanos , China , Análise por Conglomerados , Conhecimento , Microambiente Tumoral
16.
J Org Chem ; 88(22): 15687-15695, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37918975

RESUMO

An electrochemical phenyl-carbonyl coupling reaction of aromatic aldehydes or ketones to synthesize 4-(hydroxy(phenyl)methyl)benzaldehyde derivatives has been developed. The method shows high chemoselectivity, broad functional group compatibility, atom economy, and environmental benignity and has good potential applicability.

17.
Phys Chem Chem Phys ; 25(40): 27488-27497, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37800301

RESUMO

The sensitivity of energetic materials along different crystal directions is not the same and is anisotropic. In order to explore the difference in friction sensitivity of different surfaces, we calculated the structure, excess energy, surface energy, electronic structure, and the nitro group along (1 1 1), (1 1 0), (1 0 1), (0 1 1), (0 0 1), (0 1 0), and (1 0 0) surfaces of EDNA based on density functional theory. The analysis results showed that relative to other surfaces, the (0 0 1) surface has the shortest N-N average bond length, largest N-N average bond population, smallest excess energy and surface energy, widest band gap, and the largest nitro group charge value, which indicates that the (0 0 1) surface has the lowest friction sensitivity compared to other surfaces. Furthermore, the conclusions obtained by analyzing the excess energy are consistent with the results of the N-N bond length and bond population, band gap, and nitro charge. Therefore, we conclude that the friction sensitivity of different surfaces of EDNA can be evaluated using excess energy.

18.
Clin Chim Acta ; 551: 117593, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37839517

RESUMO

Biliary tract cancers are heterogeneous in etiology, morphology and molecular characteristics thus impacting disease management. Diagnosis is complex and prognosis poor. The advent of liquid biopsy has provided a unique approach to more thoroughly understand tumor biology in general and biliary tract cancers specifically. Due to their minimally invasive nature, liquid biopsy can be used to serially monitor disease progression and allow real-time monitoring of tumor genetic profiles as well as therapeutic response. Due to the unique anatomic location of biliary tract cancer, bile provides a promising biologic fluid for this purpose. This review focuses on the composition of bile and the use of these various components, ie, cells, extracellular vesicles, nucleic acids, proteins and metabolites as potential biomarkers. Based on the disease characteristics and research status of biliary tract cancer, considerable effort should be made to increase understanding of this disease, promote research and development into early diagnosis, develop efficient diagnostic, therapeutic and prognostic markers.


Assuntos
Bile , Neoplasias do Sistema Biliar , Humanos , Bile/química , Biomarcadores Tumorais/genética , Neoplasias do Sistema Biliar/diagnóstico , Prognóstico , Biópsia Líquida
19.
Altern Ther Health Med ; 29(8): 668-673, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37678873

RESUMO

Objective: To systematically evaluate the effect of levosimendan on cardiac function and outcomes in patients with sepsis. Method: We searched multiple databases including CNKI, VIP, WanFang Data, WOS, PubMed, EMbase, and The Cochrane Library up to February 2023. We targeted RCTs comparing levosimendan with dobutamine as a control for treating sepsis. After a rigorous screening and quality evaluation, 18 studies were selected for meta-analysis using Review Manager 5.4. Results: Out of 18 studies involving 980 sepsis patients, the meta-analysis revealed the following for the levosimendan group compared to dobutamine: (1) A significant reduction in mortality rate (OR = 0.63, 95% CI (0.42,0.95), P = .03). (2) Shortened ICU stay (MD = -2.55, 95% CI (-3.12, -1.98), P < .00001). (3) Increased left ventricular ejection fraction (LVEF) (MD = 6.05, 95%CI (5.28, 6.81), P < .00001) and cardiac index (CI) (MD = 0.47, 95%CI (0.35, 0.59), P < .00001). (4) Decreased blood lactate (Lac) (MD = -1.31, 95%CI (-1.73, -0.90), P < .00001) and troponin I (TnI) levels (MD = -0.43, 95%CI (-0.66, -0.21), P = .0002). (5) Reduced incidence of adverse events (OR = 0.43, 95% CI (0.23,0.81), P = .008). Conclusions: Compared to dobutamine, levosimendan substantially enhances cardiac function in sepsis patients, leading to improved outcomes and fewer adverse events.


Assuntos
Piridazinas , Sepse , Choque Séptico , Humanos , Simendana/uso terapêutico , Dobutamina/farmacologia , Dobutamina/uso terapêutico , Volume Sistólico , Hidrazonas/farmacologia , Piridazinas/farmacologia , Função Ventricular Esquerda , Sepse/tratamento farmacológico
20.
Virology ; 587: 109885, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37738842

RESUMO

Glioblastoma (GBM) is a devastating malignant brain tumor. Current therapeutic strategies targeting tumor cells have limited efficacy owing to the immunosuppressive microenvironment. Previous work demonstrated that the targeted Ad5-Ki67/IL-15 could specifically kill tumor cells and decrease the angiogenic capacity in vitro. However, the efficacy of this virus in vivo and its effect on the tumor microenvironment (TME) has not been elucidated. In this study, we found that the Ad5-Ki67/IL-15 treatment down-regulated PD-L1 expression of glioma cells. More importantly, Ad5-Ki67/IL-15 also remodeled the tumor microenvironment via increasing intratumoral T cell infiltration and PD-L1 improvement in a GBM model, as well as the increase of antitumor cytokines, thereby improving the efficacy of GBM treatment. Furthermore, a combination of Ad5-Ki67/IL-15 with PD-L1 blockade significantly inhibits tumor growth in the GBM model. These results provide new insight into the therapeutic effects of targeted oncolytic Ad5-Ki67/IL-15 in patients with GBM, indicating potential clinical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...